
 2000 Microchip Technology Inc. Preliminary DS00735A-page 1

INTRODUCTION

This application note describes the implementation of
the PICmicro MSSP module for Master I2C communi-
cations. The Master Synchronous Serial Port (MSSP)
module is the enhanced Synchronous Serial Port
developed by Microchip Technology and is featured on
many of the PICmicro devices. This module provides
for both the 4-mode SPI communications, as well as
Master and Slave I2C communications, in hardware.

For information on the SPITM peripheral implementation
see the PICmicroTM Mid-Range MCU Family Reference
Manual, document DS33023. The MSSP module in I2C
mode fully implements all Master and Slave functions
(including general call support) and provides interrupts
on START and STOP bits in hardware to determine a
free I2C bus (multi-master function). The MSSP module
implements the standard mode specifications, as well
as 7-bit and 10-bit addressing. Figure 1 depicts a func-
tional block diagram of the I2C Master mode. The appli-
cation code for this I2C example is developed for and
tested on a PIC16F873, but can be ported over to a
PIC17CXXX and PIC18CXXX PICmicro MCU which
features a MSSP module.

FIGURE 1: I2C MASTER MODE BLOCK DIAGRAM

Author: Richard L. Fischer
Microchip Technology Inc.

Read Write

SSPSR

START bit, STOP bit,

SSPBUF

Internal
Data Bus

Set/Reset, S, P, WCOL (SSPSTAT)

Shift
Clock

MSb LSb

SDA

Acknowledge
Generate

SCL

SCL In

Bus Collision

SDA In

R
ec

ei
ve

 E
na

bl
e

C
lo

ck
 c

nt
l

C
lo

ck
 A

rb
itr

at
e/

W
C

O
L

D
et

ec
t

(h
ol

d
of

f c
lo

ck
 s

ou
rc

e)

SSPADD<6:0>

Baud

Set SSPIF, BCLIF
Reset ACKSTAT, PEN (SSPCON2)

Rate
Generator

SSPM3:SSPM0

START bit detect
STOP bit detect

Write collision detect
Clock Arbitration
State counter for
end of XMIT/RCV

AN735

Using the PICmicro®
MSSP Module for Master

I2CTM Communications

AN735

DS00735A-page 2 Preliminary  2000 Microchip Technology Inc.

THE I2C BUS SPECIFICATION

Although a complete discussion of the I2C bus specifi-
cation is outside the scope of this application note,
some of the basics will be covered here. For more infor-
mation on the I2C bus specification, you may refer to
sources indicated in the References section.

The Inter-Integrated-Circuit, or I2C bus specification
was originally developed by Philips Inc. for the transfer
of data between ICs at the PCB level. The physical
interface for the bus consists of two open-collector
lines; one for the clock (SCL) and one for data (SDA).
The SDA and SCL lines are pulled high by resistors
connected to the VDD rail. The bus may have a one
Master/many Slave configuration or may have multiple
master devices. The master device is responsible for
generating the clock source for the linked Slave
devices.

The I2C protocol supports either a 7-bit addressing
mode, or a 10-bit addressing mode, permitting 128 or
1024 physical devices to be on the bus, respectively. In
practice, the bus specification reserves certain
addresses so slightly fewer usable addresses are avail-
able. For example, the 7-bit addressing mode allows
112 usable addresses. The 7-bit address protocol is
used in this application note.

All data transfers on the bus are initiated by the master
device and are done eight bits at a time, MSb first.
There is no limit to the amount of data that can be sent
in one transfer. After each 8-bit transfer, a 9th clock
pulse is sent by the master. At this time, the transmit-
ting device on the bus releases the SDA line and the
receiving device on the bus acknowledges the data
sent by the transmitting device. An ACK (SDA held low)
is sent if the data was received successfully, or a NACK
(SDA left high) is sent if it was not received success-
fully. A NACK is also used to terminate a data transfer
after the last byte is received.

According to the I2C specification, all changes on the
SDA line must occur while the SCL line is low. This
restriction allows two unique conditions to be detected
on the bus; a START sequence (S) and a STOP
sequence (P). A START sequence occurs when the
master device pulls the SDA line low while the SCL line
is high. The START sequence tells all Slave devices on
the bus that address bytes are about to be sent. The
STOP sequence occurs when the SDA line goes high
while the SCL line is high, and it terminates the trans-
mission. Slave devices on the bus should reset their
receive logic after the STOP sequence has been
detected.

The I2C protocol also permits a Repeated Start condi-
tion (Rs), which allows the master device to execute a
START sequence without preceding it with a STOP
sequence. The Repeated Start is useful, for example,
when the Master device changes from a write operation
to a read operation and does not release control of the
bus.

MSSP MODULE SETUP,
IMPLEMENTATION AND CONTROL

The following sections describe the setup, implemen-
tation and control of the PICmicro MSSP module for
I2C Master mode. Some key Special Function Regis-
ters (SFRs) utilized by the MSSP module are:

1. SSP Control Register1 (SSPCON1)
2. SSP Control Register2 (SSPCON2)
3. SSP Status Register (SSPSTAT)

4. Pin Direction Control Register (TRISC)
5. Serial Receive/Transmit Buffer (SSPBUF)
6. SSP Shift Register (SSPSR) - Not directly

accessible
7. SSP Address Register (SSPADD)

8. SSP Hardware Event Status (PIR1)
9. SSP Interrupt Enable (PIE1)
10. SSP Bus Collision Status (PIR2)

11. SSP Bus Collision Interrupt Enable (PIE2)

Module Setup

To configure the MSSP module for Master I2C mode,
there are key SFR registers which must be initialized.
Respective code examples are shown for each.

1. SSP Control Register1 (SSPCON1)

• I2C Mode Configuration
2. SSP Address Register (SSPADD<6:0>)

• I2C Bit Rate

3. SSP Status Register (SSPSTAT)
• Slew Rate Control
• Input Pin Threshold Levels (SMbus or I2C)

4. Pin Direction Control (TRISC)
• SCL/SDA Direction

To configure the MSSP module for Master I2C mode,
the SSPCON1 register is modified as shown in
Example 1.

EXAMPLE 1: I2C MODE CONFIGURATION

With the two-wire synchronous I2C bus, the Master
generates all clock signals at a desired bit rate. Using
the formula in Equation 1, the bit rate can be calculated
and written to the SSPADD register. For a 400kHz bit
rate @ Fosc = 16MHz, the SSPADD register is modi-
fied as shown in Example 2.

movlw b’00101000’ ; setup value
 ; into W register
banksel SSPCON1 ; select SFR
 ; bank
movwf SSPCON1 ; configure for
 ; Master I2C

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 3

EQUATION 1: BIT RATE CALCULATION

EXAMPLE 2: I2C BIT RATE SETUP

To enable the slew rate control for a bit rate of 400kHz
and select I2C input thresholds, the SSPSTAT register
is modified as shown in Example 3.

EXAMPLE 3: SLEW RATE CONTROL

The SSPSTAT register also provides for read-only
status bits which can be utilized to determine the status
of a data transfer, typically for the Slave data transfer
mode. These status bits are:

• D/A - Data/Address

• P - STOP
• S - START
• R/W - Read/Write Information

• UA - Update Address (10-bit mode only)
• BF - Buffer Full

Finally, before selecting any I2C mode, the SCL and
SDA pins must be configured to inputs by setting the
appropriate TRIS bits. Selecting an I2C mode by set-
ting the SSPEN bit (SSPCON1<5>), enables the SCL
and SDA pins to be used as the clock and data lines in
I2C mode. A logic "1" written to the respective TRIS bits
configure these pins as inputs. An example setup for a
PIC16F873 is shown in Example 4. Always refer to the
respective data sheet for the correct SCL and SDA
TRIS bit locations.

EXAMPLE 4: SCL/SDA PIN DIRECTION
SETUP

The four remaining SFR’s can be used to provide for
I2C event completion and Bus Collision interrupt func-
tionality.

1. SSP Event Interrupt Enable bit (SSPIE)
2. SSP Event Status bit (SSPIF)
3. SSP Bus Collision Interrupt Enable bit (BCLIE)

4. SSP Bus Collision Event Status bit (BCLIF)

Implementation and Control

Once the basic functionality of the MSSP module is
configured for Master I2C mode, the remaining steps
relate to the implementation and control of I2C events.

The Master can initiate any of the following I2C bus
events:

1. START
2. Restart

3. STOP
4. Read (Receive)
5. Acknowledge (after a read)

• Acknowledge
• Not Acknowledge (NACK)

6. Write

The first four events are initiated by asserting high the
appropriate control bit in the SSPCON2<3:0> register.
The Acknowledge bit event consists of first setting the
Acknowledge state, ACKDT (SSPCON2<5>) and then
asserting high the event control bit ACKEN
(SSPCON2<4>).

Data transfer with acknowledge is obligatory. The
acknowledge related clock is generated by the Master.
The transmitter releases the SDA line (HIGH) during
the acknowledge clock pulse. The receiver must pull
down the SDA line during the acknowledge clock pulse
so that it remains stable LOW during the HIGH period
of this clock pulse. This sequence is termed "ACK" or
acknowledge.

When the Slave doesn’t acknowledge the Master dur-
ing this acknowledge clock pulse (for any reason), the
data line must be left HIGH by the Slave. This
sequence is termed "NACK" or not acknowledge.

Example 5 shows an instruction sequence which will
generate an acknowledge event by the Master.

EXAMPLE 5: ACKNOWLEDGE EVENT

movlw b’00001001’ ; setup value
 ; into W register
banksel SSPADD ; select SFR bank
movwf SSPADD ; baud rate =
 ; 400KHz @ 16MHz

movlw b’00000000’ ; setup value
 ; into W register
movwf SSPSTAT ; slew rate
 ; enabled
banksel SSPSTAT ; select SFR bank

movlw b’00011000’ ; setup value
 ; into W register
banksel TRISC ; select SFR bank
iorwf TRISC,f ; SCL and SDA
 ; are inputs

SSPADD =

FOSC

Bit Rate
4

- 1
()

banksel SSPCON2 ; select SFR
 ; bank
bcf SSPCON2, ACKDT ; set ack bit
 ; state to 0
bsf SSPCON2, ACKEN ; initiate ack

AN735

DS00735A-page 4 Preliminary  2000 Microchip Technology Inc.

Example 6 shows an instruction sequence which would
generate a not acknowledge (NACK) event by the
Master.

EXAMPLE 6: NOT ACKNOWLEDGE EVENT

The I2C write event is initiated by writing a byte into
the SSPBUF register. An important item to note at this
point, is when implementing a Master I2C controller
with the MSSP module, no events can be queued. One
event must be finished and the module IDLE before the
next event can be initiated. There are a few of ways to
ensure that the module is IDLE before initiating the next
event. The first method is to develop and use a generic
idle check subroutine. Basically, this routine could be
called before initiating the next event. An example of
this code module is shown in Example 7.

EXAMPLE 7: CODE MODULE FOR
GENERIC IDLE CHECK

The second approach is to utilize a specific event idle
check. For example, the Master initiates a START
event and wants to know when the event completes.
An example of this is shown in Example 8.

EXAMPLE 8: START EVENT COMPLETION
CHECK

Another example of this could be a read event comple-
tion check as shown in Example 9.

EXAMPLE 9: READ EVENT COMPLETION
CHECK

These examples can be modified slightly to reflect the
other bus events, such as: Restart, STOP and the
Acknowledge state after a read event. The bits for
these events are defined in the SSPCON2 register.

banksel SSPCON2 ; select SFR
 ; bank
bsf SSPCON2, ACKDT ; set ack bit
 ; state to 1
bsf SSPCON2, ACKEN ; initiate ack

i2c_idle ; routine name
 banksel SSPSTAT ; select SFR
 ; bank
 btfsc SSPSTAT,R_W ; transmit
 ; in progress?
 goto $-1 ; module busy
 ; so wait
 banksel SSPCON2 ; select SFR
 ; bank
 movf SSPCON2,w ; get copy
 ; of SSPCON2
 andlw 0x1F ; mask out
 ; non-status
 btfss STATUS,Z ; test for
 ; zero state
 goto $-3 ; bus is busy
 ; test again
 return ; return

This code initiates an I2C start event

banksel SSPCON2 ; select SFR
 ; bank
bsf SSPCON2,SEN ; initiate
 ; I2C start

; This code checks for completion of I2C
; start event

btfsc SSPCON2,SEN ; test start
 ; bit state
goto $-1 ; module busy
 ; so wait

This code initiates an I2C read event

banksel SSPCON2 ; select SFR
 ; bank
bsf SSPCON2,RCEN ; initiate
 ; I2C read

; This code checks for completion of I2C
; read event

btfsc SSPCON2,RCEN ; test read
 ; bit state
goto $-1 ; module busy
 ; so wait

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 5

For the I2C write event, the idle check status bit is
defined in the SSPSTAT register. An example of this is
shown in Example 10.

EXAMPLE 10: WRITE EVENT COMPLETION
CHECK

The third approach is the implementation of interrupts.
With this approach, the next I2C event is initiated when
an interrupt occurs. This interrupt is generated at the
completion of the previous event. This approach will
require a "state" variable to be used as an index into the
next I2C event (event jump table). An example of a pos-
sible interrupt structure is shown in Example 11 and the
jump table is shown in Example 12. The entire code
sequence is provided in Appendix A, specifically in the
mastri2c.asm and i2ccomm.asm code files.

EXAMPLE 11: INTERRUPT SERVICE CODE
EXCERPT

This code initiates an I2C write event

banksel SSPBUF ; select SFR bank
movlw 0xAA ; load value
 ; into W
movwf SSPBUF ; initiate I2C
 ; write cycle

; This code checks for completion of I2C
; write event

banksel SSPSTAT ; select SFR bank
btfsc SSPSTAT,R_W ; test write bit
 ; state
goto $-1 ; module busy
 ; so wait

; Interrupt entry here
; Context Save code here.....

; I2C ISR handler here

 bsf STATUS,RP0 ; select SFR
 ; bank
 btfss PIE1,SSPIE ; test if
 ; interrupt is
 ; enabled
 goto test_buscoll ; no, so test for
 ; Bus Collision
 bcf STATUS,RP0 ; select SFR
 ; bank
 btfss PIR1,SSPIF ; test for SSP
 ; H/W flag
 goto test_buscoll ; no, so test
 ; for Bus
 ; Collision Int
 bcf PIR1,SSPIF ; clear SSP
 ; H/W flag
 pagesel service_i2c ; select page
 ; bits for
 ; function
 call service_i2c ; service valid
 ; I2C event

; Additional ISR handlers here

; Context Restore code here

 retfie ; return

AN735

DS00735A-page 6 Preliminary  2000 Microchip Technology Inc.

EXAMPLE 12: SERVICE I2C JUMP TABLE CODE EXCERPT
service_i2c ; routine name

 movlw high I2CJump ; fetch upper byte of jump table address
 movwf PCLATH ; load into upper PC latch
 movlw i2cSizeMask ;
 banksel i2cState ; select GPR bank
 andwf i2cState,w ; retrieve current I2C state
 addlw low (I2CJump + 1) ; calc state machine jump addr into W register
 btfsc STATUS,C ; skip if carry occured
 incf PCLATH,f ; otherwise add carry
I2CJump ; address were jump table branch occurs
 movwf PCL ; index into state machine jump table
 ; jump to processing for each state = i2cState value
 ; for each state
; Jump Table entry begins here

 goto WrtStart ; start condition
 goto SendWrtAddr ; write address with R/W=1
 goto WrtAckTest ; test acknowledge state after address write
 goto WrtStop ; generate stop condition

 goto ReadStart ; start condition
 goto SendReadAddr ; write address with R/W=0
 goto ReadAckTest ; test acknowledge state after address write
 goto ReadData ; read more data
 goto ReadStop ; generate stop condition

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 7

Typical Master I2C writes and reads using the MSSP
module are shown in Figure 2 and Figure 3, respec-
tively. Notice that the hardware interrupt flag bit, SSPIF

(PIR1<3>), is asserted when each event completes. If
interrupts are to be used, the SSPIF flag bit must be
cleared before initiating the next event.

FIGURE 2: I2C MASTER MODE WRITE TIMING (7 OR 10-BIT ADDRESS)

S
D

A

S
C

L

S
S

P
IF

B
F

 (
S

S
P

S
TA

T
<

0>
)

S
E

N

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
C

K
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0

N
A

C
K

Tr
an

sm
itt

in
g

D
at

a
or

 S
ec

on
d

H
al

f
R

/W
 =

 0
Tr

an
sm

it
A

dd
re

ss
 to

 S
la

ve

1
2

3
4

5
6

7
8

9
1

2
3

4
5

6
7

8
9

P

C
le

ar
ed

 in
 s

of
tw

ar
e

se
rv

ic
e

ro
ut

in
e

S
S

P
B

U
F

 is
 w

rit
te

n
in

 s
of

tw
ar

e

F
ro

m
 S

S
P

 in
te

rr
up

t

A
fte

r
S

TA
R

T
 c

on
di

tio
n

S
E

N
 c

le
ar

ed
 b

y
ha

rd
w

ar
e.

S

S
S

P
B

U
F

 w
rit

te
n

w
ith

 7
-b

it
ad

dr
es

s
an

d
R

/W
st

ar
t t

ra
ns

m
it

S
C

L
he

ld
 lo

w
w

hi
le

 C
P

U
re

sp
on

ds
 to

 S
S

P
IF

S
E

N
 =

 0

of
 1

0-
bi

t a
dd

re
ss

W
rit

e
S

S
P

C
O

N
2<

0>
 S

E
N

 =
 1

S
TA

R
T

 c
on

di
tio

n
be

gi
ns

F
ro

m
 s

la
ve

 c
le

ar
 A

C
K

S
TA

T
 b

it
S

S
P

C
O

N
2<

6>

A
C

K
S

TA
T

 in

S
S

P
C

O
N

2
=

 1

C
le

ar
ed

 in
 s

of
tw

ar
e

S
S

P
B

U
F

 w
rit

te
n

P
E

N

C
le

ar
ed

 in
 s

of
tw

ar
e

R
/W

S
S

P
B

U
F

 e
m

pt
y

S
S

P
B

U
F

 e
m

pt
y

AN735

DS00735A-page 8 Preliminary  2000 Microchip Technology Inc.

FIGURE 3: I2C MASTER MODE READ TIMING (7-BIT ADDRESS)

P
9

8
7

6
5

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S

A
7

A
6

A
5

A
4

A
3

A
2

A
1

S
D

A

S
C

L
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9
1

2
3

4

B
us

 M
as

te
r

te
rm

in
at

es
tr

an
sf

er

A
C

K
R

ec
ei

vi
ng

 D
at

a
fr

om
 S

la
ve

R
ec

ei
vi

ng
 D

at
a

fr
om

 S
la

ve

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
C

K
R

/W
 =

 1
T

ra
ns

m
it

A
dd

re
ss

 to
 S

la
ve

S
S

P
IF

B
F

A
C

K
 is

 n
ot

 s
en

t

W
rit

e
to

 S
S

P
C

O
N

2<
0>

(S
E

N
 =

 1
)

W
rit

e
to

 S
S

P
B

U
F

 o
cc

ur
s

he
re A

C
K

 fr
om

 S
la

ve

M
as

te
r

co
nf

ig
ur

ed
 a

s
a

re
ce

iv
er

by
 p

ro
gr

am
m

in
g

S
S

P
C

O
N

2<
3>

, (
R

C
E

N
 =

 1
)

P
E

N
 b

it
=

 1
w

rit
te

n
he

re

D
at

a
sh

ift
ed

 in
 o

n
fa

lli
ng

 e
dg

e
of

 C
LK

C
le

ar
ed

 in
 s

of
tw

ar
e

S
ta

rt
 X

M
IT

S
E

N
 =

 0

S
S

P
O

V

S
D

A
 =

 0
,

S
C

L
=

 1
w

hi
le

 C
P

U

(S
S

P
S

TA
T

<
0>

)

N
A

C
K

La
st

 b
it

is
 s

hi
fte

d
in

to
 S

S
P

S
R

 a
nd

co
nt

en
ts

 a
re

 u
nl

oa
de

d
in

to
 S

S
P

B
U

F

C
le

ar
ed

 in
 s

of
tw

ar
e

C
le

ar
ed

 in
 s

of
tw

ar
e

S
et

 S
S

P
IF

 in
te

rr
up

t
at

 e
nd

 o
f r

ec
ei

ve

S
et

 P
 b

it
(S

S
P

S
TA

T
<

4>
)

an
d

S
S

P
IF

C
le

ar
ed

 in
so

ftw
ar

e

A
C

K
 fr

om
 M

as
te

r

S
et

 S
S

P
IF

 a
t e

nd

S
et

 S
S

P
IF

 in
te

rr
up

t
at

 e
nd

 o
f a

ck
no

w
le

dg
e

se
qu

en
ce

S
et

 S
S

P
IF

 in
te

rr
up

t
at

 e
nd

 o
f a

ck
no

w
-

le
dg

e
se

qu
en

ce

of
 r

ec
ei

ve

S
et

 A
C

K
E

N
 s

ta
rt

 a
ck

no
w

le
dg

e
se

qu
en

ce

S
S

P
O

V
 is

 s
et

 b
ec

au
se

S
S

P
B

U
F

 is
 s

til
l f

ul
l

S
D

A
 =

 A
C

K
D

T
 =

 1

R
C

E
N

 c
le

ar
ed

au
to

m
at

ic
al

ly
R

C
E

N
 =

 1
 s

ta
rt

ne
xt

 r
ec

ei
ve

W
rit

e
to

 S
S

P
C

O
N

2<
4>

to
 s

ta
rt

 a
ck

no
w

le
dg

e
se

qu
en

ce
S

D
A

 =
 A

C
K

D
T

 (
S

S
P

C
O

N
2<

5>
)

=
 0

R
C

E
N

 c
le

ar
ed

au
to

m
at

ic
al

ly

re
sp

on
ds

 to
 S

S
P

IF

A
C

K
E

NB
eg

in
 S

TA
R

T
 C

on
di

tio
n

C
le

ar
ed

 in
 s

of
tw

ar
e

S
D

A
 =

 A
C

K
D

T
 =

 0

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 9

ERROR HANDLING

When the MSSP module is configured as a Master I2C
controller, there are a few operational errors which may
occur and should be processed correctly. Each error
condition should have a root cause and solution(s).

Write Collision (Master I2C Mode)

In the event of a Write Collision, the WCOL bit
(SSPCON1<7>) will be set high. This bit will be set if
queueing of events is attempted. For example, an I2C
START event is initiated, as was shown in Example 8.
Before this event completes, a write sequence is
attempted by the Master firmware. As a result of not
waiting for the module to be IDLE, the WCOL bit is set
and the contents of the SSPBUF register are
unchanged (the write doesn’t occur).

Bus Collision

In the event of a Bus Collision, the BCLIF bit (PIR2<3>)
will be asserted high. The root cause of the bus colli-
sion may be one of the following:

• Bus Collision during a START event
• Bus Collision during a Repeated Start event

• Bus Collision during a STOP event
• Bus Collision during address/data transfer

When the Master outputs address/data bits onto the
SDA pin, arbitration takes place when the Master out-
puts a '1' on SDA by letting SDA float high and another
Master asserts a '0'. When the SCL pin floats high,
data should be stable. If the expected data on SDA is a
'1' and the data sampled on the SDA pin = '0', then a
bus collision has taken place. The Master will set the
Bus Collision Interrupt Flag, BCLIF and reset the I2C
port to its IDLE state. The next sequence should begin
with a I2C START event.

Not Acknowledge (NACK)

A NACK does not always indicate an error, but rather
some operational state which must be recognized and
processed. As defined in the I2C protocol, the
addressed Slave device should drive the SDA line low
during ninth clock period if communication is to con-
tinue. A NACK event may be caused by various condi-
tions, such as:

• There may be a software error with the addressed
Slave I2C device.

• There may be a hardware error with the
addressed Slave I2C device.

• The Slave device may experience, or even gener-
ate, a receive overrun. In this case, the Slave
device will not drive the SDA line low and the
Master device will detect this.

The response of the Master depends on the software
error handling layer in the application firmware. One
thing to note is that the I2C bus is still held by the cur-
rent Master. The Master has a couple of options at this
point, which are:

• Generate an I2C Restart event
• Generate an I2C STOP event

• Generate an I2C STOP/START event

If the Master wants to retain control of the bus (Multi-
Master bus) then a I2C Restart event should be initi-
ated. If a I2C STOP/START sequence is generated, it is
possible to lose control of the bus in a Multi-Master sys-
tem. This may not be an issue and is left up to the sys-
tem designer to determine the appropriate solution.

MULTI-MASTER OPERATION

In a Mutli-Master system, there is a possibility that two
or more Masters generate a START condition within the
minimum hold time of the START condition, which
results in a defined START condition to the bus.

Multi-Master mode support is achieved by bus arbitra-
tion. When the Master outputs address/data bits onto
the SDA pin, arbitration takes place when the Master
outputs a '1' on SDA by letting SDA float high and
another Master asserts a '0'. When the SCL pin floats
high, data should be stable. If the expected data on
SDA is a '1' and the data sampled on the SDA pin = '0',
then a bus collision has taken place. The Master will set
the Bus Collision Interrupt Flag, BCLIF and reset the
I2C port to its IDLE state.

If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDA and SCL lines are de-asserted, and
the SSPBUF can be written to. When the user services
the bus collision interrupt service routine, and if the I2C
bus is free, the user can resume communication by
asserting a START condition.

If a START, Repeated Start, STOP, or Acknowledge
condition was in progress when the bus collision
occurred, the condition is aborted, the SDA and SCL
lines are de-asserted, and the respective control bits in
the SSPCON2 register are cleared. When the user ser-
vices the bus collision interrupt service routine, and if
the I2C bus is free, the user can resume communication
by asserting a START condition.

The Master will continue to monitor the SDA and SCL
pins, and if a STOP condition occurs, the SSPIF bit will
be set.

In Multi-Master mode, and when the MSSP is config-
ured as a Slave, the interrupt generation on the detec-
tion of START and STOP conditions allows the
determination of when the bus is free. Control of the I2C
bus can be taken when the P bit is set in the SSPSTAT
register, or the bus is idle and the S and P bits are
cleared.

Note: Interrupts are not generated as a result of
a write collision. The application firmware
must monitor the WCOL bit for detection of
this error.

AN735

DS00735A-page 10 Preliminary  2000 Microchip Technology Inc.

When the MSSP is configured as a Master and it loses
arbitration during the addressing sequence, it’s possi-
ble that the winning Master is trying to address it. The
losing Master must, therefore, switch over immediately
to its Slave mode. While the MSSP module found on
the PICmicro MCU does support Master I2C, if it is the
Master which lost arbitration and is also being
addressed, the winning Master must restart the com-
munication cycle over with a START followed by the
device address. The MSSP Master I2C mode imple-
mentation does not clock in the data placed on the bus
during Multi-Master arbitration.

GENERAL CALL ADDRESS
SUPPORT

The MSSP module supports the general call address
mode when configured as a Slave (See Figure 4
below). The addressing procedure for the I2C bus is
such, that the first byte after the START condition usu-
ally determines which device will be the Slave
addressed by the Master. The exception is the general
call address, which can address all devices. When this
address is used, all devices should, in theory, respond
with an Acknowledge.

General call support can be useful if the Master wants
to synchronize all Slaves, or wants to broadcast a mes-
sage to all Slaves

The general call address is one of eight addresses
reserved for specific purposes by the I2C protocol. It
consists of all 0’s with R/W = 0. The general call
address is recognized when the General Call Enable
bit (GCEN) is enabled (SSPCON2<7> set). Following a
START bit detect, 8-bits are shifted into SSPSR and the
address is compared against SSPADD, and is also
compared to the general call address fixed in hard-
ware.

If the general call address matches, the SSPSR is
transferred to the SSPBUF, the BF flag bit is set (eighth
bit) and on the falling edge of the ninth bit (ACK bit), the
SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the inter-
rupt can be checked by reading the contents of the
SSPBUF to determine if the address was device spe-
cific, or a general call address.

In 10-bit mode, the SSPADD is required to be updated
for the second half of the address to match, and the UA
bit is set (SSPSTAT<1>). If the general call address is
sampled when the GCEN bit is set while the Slave is
configured in 10-bit address mode, then the second
half of the address is not necessary, the UA bit will not
be set, and the Slave will begin receiving data.

FIGURE 4: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT ADDRESS MODE)

.

SDA

SCL

S

SSPIF

BF (SSPSTAT<0>)

SSPOV (SSPCON1<6>)

Cleared in software

SSPBUF is read

R/W = 0
ACKGeneral Call Address

Address is compared to General Call Address

GCEN (SSPCON2<7>)

Receiving data

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

D7 D6 D5 D4 D3 D2 D1 D0

after ACK, set interrupt

’0’

’1’

ACK

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 11

When the MSSP module is configured as a Master I2C
device, the operational characteristics of the SDA and
SCL pins should be known. Table 1 below provides a
summation of these pin characteristics.

TABLE 1: PICMICRO DEVICES WITH MSSP MODULE

Device

I2C Pin Characteristics

Slew Rate
Control(1)

Glitch Filter(1)

on Inputs
Open Drain Pin

Driver(2,3)

SMbus
Compatible Input

Levels(4)

PIC16C717 Yes Yes No No

PIC16C770 Yes Yes No No
PIC16C771 Yes Yes No No
PIC16C773 Yes Yes No No

PIC16C774 Yes Yes No No
PIC16F872 Yes Yes No Yes
PIC16F873 Yes Yes No Yes

PIC16F874 Yes Yes No Yes
PIC16F876 Yes Yes No Yes
PIC16F877 Yes Yes No Yes

PIC17C752 Yes Yes Yes No
PIC17C756A Yes Yes Yes No

PIC17C762 Yes Yes Yes No
PIC17C766 Yes Yes Yes No

PIC18C242 Yes Yes No No
PIC18C252 Yes Yes No No
PIC18C442 Yes Yes No No

PIC18C452 Yes Yes No No
Note 1: A “glitch” filter is on the SCL and SDA pins when the pin is an input. The filter operates in both the 100 kHz

and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of
the pin that is independent of device frequency

2: P-Channel driver disabled for PIC16C/FXXX and PIC18CXXX devices.

3: ESD/EOS protection diode to VDD rail on PIC16C/FXXX and PIC18CXXX devices.

4: SMbus input levels are not available on all PICmicro devices. Consult the respective data sheet for
electrical specifications.

AN735

DS00735A-page 12 Preliminary  2000 Microchip Technology Inc.

WHAT’S IN THE APPENDIX

Example assembly source code for the Master I2C
device is included in Appendix A. Table 2 lists the
source code files and provides a brief functional

description .The code is developed for and tested on a
PIC16F873 but can be ported over to a PIC17CXXX
and PIC18CXXX PICmicro MCU which features a
MSSP module.

TABLE 2: SOURCE CODE FILES

SUMMARY

The Master Synchronous Serial Port (MSSP) embed-
ded on many of the PICmicro devices, provides for both
the 4-mode SPI communications as well as Master and
Slave I2C communications in hardware. Hardware
peripheral support removes the code overhead of gen-
erating I2C based communications in the application
firmware. Interrupt support of the hardware peripheral
also allows for timely and efficient task management.

This application note has presented some key opera-
tional basics on the MSSP module which should aid the
developer in the understanding and implementation of
the MSSP module for I2C based communications.

REFERENCES

The I2C – Bus Specification, Philips Semiconductor,
Version 2.1, http://www-us.semiconductors.com/i2c/

AN736, An I2C Network Protocol for Environmental
Monitoring, Microchip Technology Inc., Document #
DS00736

AN734, Using the PICmicro SSP Module for Slave I2C
Communications, Microchip Technology Inc., Docu-
ment # DS00734

PICmicroTM Mid-Range MCU Reference Manual,
Microchip Technology Inc., Document # DS33023

PIC16C717/770/771 Data Sheet, Microchip Technol-
ogy Inc., Document # DS41120

PIC16F87X Data Sheet, Microchip Technology Inc.,
Document # DS30292

File Name Description

mastri2c.asm Main code loop and interrupt control functions.

mastri2c.inc Variable declarations & definitions.

i2ccomm1.inc Reference linkage for variables utilized in i2ccomm.asm file.

i2ccomm.asm Routines for communicating with the I2C Slave device.

i2ccomm.inc Variable declarations & definitions.

flags.inc Common flag definitions utilized within the mastri2c.asm and i2ccomm.asm files.

init.asm Routines for initializing the PICmicro peripherals and ports.

p16f873.inc PICmicro SFR definition file.

16f873.lkr Modified linker script file.

Note: The PICmicro MCU based source files were developed and tested with the following Microchip tools:

• MPLAB® version 5.11.00
• MPASM version 2.50.00
• MPLINK version 2.10.00

Note: Information contained in this application
note, regarding device applications and
the like, is intended through suggestion
only and may be superseded by updates.
No representation or warranty is given and
no liability is assumed by Microchip Tech-
nology Incorporated, with respect to the
accuracy or use of such information, or
infringement of patents or other intellectual
property rights arising from such use, or
otherwise.

 2000 Microchip Technology Inc. Preliminary DS00735A-page 13

AN735

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX A: I2C MASTER READ AND WRITE ROUTINES (ASSEMBLY)
;***

; *

; Implementing Master I2C with the MSSP module on a PICmicro *

; *

;***

; *

; Filename: mastri2c.asm *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

; Author: Richard L. Fischer *

; *

; Company: Microchip Technology Incorporated *

; *

;***

; *

; System files required: *

; *

; mastri2c.asm *

; i2ccomm.asm *

; init.asm *

; *

; mastri2c.inc *

; i2ccomm.inc *

; i2ccomm1.inc *

; flags.inc *

; *

; p16f873.inc *

; 16f873.lkr (modified for interrupts) *

; *

AN735

DS00735A-page 14 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Notes: *

; *

; Device Fosc -> 8.00MHz *

; WDT -> on *

; Brownout -> on *

; Powerup timer -> on *

; Code Protect -> off *

; *

; Interrupt sources - *

; 1. I2C events (valid events) *

; 2. I2C Bus Collision *

; 3. Timer1 - 100mS intervals *

; *

; *

***/

 list p=16f873 ; list directive to define processor

 #include <p16f873.inc> ; processor specific variable definitions

 __CONFIG (_CP_OFF & _WDT_ON & _BODEN_ON & _PWRTE_ON & _HS_OSC & _WRT_ENABLE_ON

 & _LVP_OFF & _CPD_OFF)

 #include "mastri2c.inc" ; required include file

 #include "i2ccomm1.inc" ; required include file

 errorlevel -302 ; suppress bank warning

 #define ADDRESS 0x01 ; Slave I2C address

;--

; ********************* RESET VECTOR LOCATION ********************

;--

RESET_VECTOR CODE 0x000 ; processor reset vector

 movlw high start ; load upper byte of ’start’ label

 movwf PCLATH ; initialize PCLATH

 goto start ; go to beginning of program

;--

; ******************* INTERRUPT VECTOR LOCATION *******************

;--

INT_VECTOR CODE 0x004 ; interrupt vector location

 movwf w_temp ; save off current W register contents

 movf STATUS,w ; move status register into W register

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 15

 clrf STATUS ; ensure file register bank set to 0

 movwf status_temp ; save off contents of STATUS register

 movf PCLATH,w

 movwf pclath_temp ; save off current copy of PCLATH

 clrf PCLATH ; reset PCLATH to page 0

; TEST FOR COMPLETION OF VALID I2C EVENT

 bsf STATUS,RP0 ; select SFR bank

 btfss PIE1,SSPIE ; test is interrupt is enabled

 goto test_buscoll ; no, so test for Bus Collision Int

 bcf STATUS,RP0 ; select SFR bank

 btfss PIR1,SSPIF ; test for SSP H/W flag

 goto test_buscoll ; no, so test for Bus Collision Int

 bcf PIR1,SSPIF ; clear SSP H/W flag

 pagesel service_i2c ; select page bits for function

 call service_i2c ; service valid I2C event

; TEST FOR I2C BUS COLLISION EVENT

test_buscoll

 banksel PIE2 ; select SFR bank

 btfss PIE2,BCLIE ; test if interrupt is enabled

 goto test_timer1 ; no, so test for Timer1 interrupt

 bcf STATUS,RP0 ; select SFR bank

 btfss PIR2,BCLIF ; test if Bus Collision occured

 goto test_timer1 ; no, so test for Timer1 interrupt

 bcf PIR2,BCLIF ; clear Bus Collision H/W flag

 call service_buscoll ; service bus collision error

; TEST FOR TIMER1 ROLLOVER EVENT

test_timer1

 banksel PIE1 ; select SFR bank

 btfss PIE1,TMR1IE ; test if interrupt is enabled

 goto exit_isr ; no, so exit ISR

 bcf STATUS,RP0 ; select SFR bank

 btfss PIR1,TMR1IF ; test if Timer1 rollover occured

 goto exit_isr ; no so exit isr

 bcf PIR1,TMR1IF ; clear Timer1 H/W flag

 pagesel service_i2c ; select page bits for function

 call service_i2c ; service valid I2C event

 banksel T1CON ; select SFR bank

 bcf T1CON,TMR1ON ; turn off Timer1 module

 movlw 0x5E ;

AN735

DS00735A-page 16 Preliminary  2000 Microchip Technology Inc.

 addwf TMR1L,f ; reload Timer1 low

 movlw 0x98 ;

 movwf TMR1H ; reload Timer1 high

 banksel PIE1 ; select SFR bank

 bcf PIE1,TMR1IE ; disable Timer1 interrupt

 bsf PIE1,SSPIE ; enable SSP H/W interrupt

exit_isr

 clrf STATUS ; ensure file register bank set to 0

 movf pclath_temp,w

 movwf PCLATH ; restore PCLATH

 movf status_temp,w ; retrieve copy of STATUS register

 movwf STATUS ; restore pre-isr STATUS register contents

 swapf w_temp,f ;

 swapf w_temp,w ; restore pre-isr W register contents

 retfie ; return from interrupt

;--

; ******************* MAIN CODE START LOCATION ******************

;--

MAIN CODE

start

 pagesel init_ports

 call init_ports ; initialize Ports

 call init_timer1 ; initialize Timer1

 pagesel init_i2c

 call init_i2c ; initialize I2C module

 banksel eflag_event ; select GPR bank

 clrf eflag_event ; initialize event flag variable

 clrf sflag_event ; initialize event flag variable

 clrf i2cState

 call CopyRom2Ram ; copy ROM string to RAM

 call init_vars ; initialize variables

 banksel PIE2 ; select SFR bank

 bsf PIE2,BCLIE ; enable interrupt

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; enable Timer1 interrupt

 bsf INTCON,PEIE ; enable peripheral interrupt

 bsf INTCON,GIE ; enable global interrupt

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 17

;***

; MAIN LOOP BEGINS HERE

;***

main_loop

 clrwdt ; reset WDT

 banksel eflag_event ; select SFR bank

 btfsc eflag_event,ack_error ; test for ack error event flag

 call service_ackerror ; service ack error

 banksel sflag_event ; select SFR bank

 btfss sflag_event,rw_done ; test if read/write cycle complete

 goto main_loop ; goto main loop

 call string_compare ; else, go compare strings

 banksel T1CON ; select SFR bank

 bsf T1CON,TMR1ON ; turn on Timer1 module

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; re-enable Timer1 interrupts

 call init_vars ; re-initialize variables

 goto main_loop ; goto main loop

;--

; *************** Bus Collision Service Routine ******************

;--

service_buscoll

 banksel i2cState ; select GPR bank

 clrf i2cState ; reset I2C bus state variable

 call init_vars ; re-initialize variables

 bsf T1CON,TMR1ON ; turn on Timer1 module

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; enable Timer1 interrupt

 return

;--

; ************* Acknowledge Error Service Routine ***************

;--

service_ackerror

 banksel eflag_event ; select SFR bank

 bcf eflag_event,ack_error ; reset acknowledge error event flag

 clrf i2cState ; reset bus state variable

AN735

DS00735A-page 18 Preliminary  2000 Microchip Technology Inc.

 call init_vars ; re-initialize variables

 bsf T1CON,TMR1ON ; turn on Timer1 module

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; enable Timer1 interrupt

 return

;--

; ***** INITIALIZE VARIABLES USED IN SERVICE_I2C FUNCTION ******

;--

init_vars

 movlw D’21’ ; byte count for this example

 banksel write_count ; select GPR bank

 movwf write_count ; initialize write count

 movwf read_count ; initialize read count

 movlw write_string ; get write string array address

 movwf write_ptr ; initialize write pointer

 movlw read_string ; get read string placement address

 movwf read_ptr ; initialize read pointer

 movlw ADDRESS ; get address of slave

 movwf temp_address ; initialize temporary address hold reg

 return

;--

; ******************* Compare Strings ************************

;--

;Compare the string written to and read back from the Slave

string_compare

 movlw read_string

 banksel ptr1 ; select GPR bank

 movwf ptr1 ; initialize first pointer

 movlw write_string

 movwf ptr2 ; initialize second pointer

loop

 movf ptr1,w ; get address of first pointer

 movwf FSR ; init FSR

 movf INDF,w ; retrieve one byte

 banksel temp_hold ; select GPR bank

 movwf temp_hold ; save off byte 1

 movf ptr2,w

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 19

 movwf FSR ; init FSR

 movf INDF,w ; retrieve second byte

 subwf temp_hold,f ; do comparison

 btfss STATUS,Z ; test for valid compare

 goto not_equal ; bytes not equal

 iorlw 0x00 ; test for null character

 btfsc STATUS,Z

 goto end_string ; end of string has been reached

 incf ptr1,f ; update first pointer

 incf ptr2,f ; update second pointer

 goto loop ; do more comparisons

not_equal

 banksel PORTB ; select GPR bank

 movlw b’00000001’

 xorwf PORTB,f

 goto exit

end_string

 banksel PORTB ; select GPR bank

 movlw b’00000010’ ; no error

 xorwf PORTB,f

exit

 banksel sflag_event ; select SFR bank

 bcf sflag_event,rw_done ; reset flag

 return

;--

; ******************* Program Memory Read *******************

;--

;Read the message from location MessageTable

CopyRom2Ram

 movlw write_string

 movwf FSR ; initialize FSR

 banksel EEADRH ; select SFR bank

 movlw High (Message1) ; point to the Message Table

 movwf EEADRH ; init SFR EEADRH

 movlw Low (Message1)

 movwf EEADR ; init SFR EEADR

next1

 banksel EECON1 ; select SFR bank

 bsf EECON1,EEPGD ; select the program memory

AN735

DS00735A-page 20 Preliminary  2000 Microchip Technology Inc.

 bsf EECON1,RD ; read word

 nop

 nop

 banksel EEDATA

 rlf EEDATA,w ; get bit 7 in carry

 rlf EEDATH,w ; get high byte in w

 movwf INDF ; save it

 incf FSR,f

 banksel EEDATA ; select SFR bank

 bcf EEDATA,7 ; clr bit 7

 movf EEDATA,w ; get low byte and see = 0?

 btfsc STATUS,Z ; end?

 return

 movwf INDF ; save it

 incf FSR,f ; update FSR pointer

 banksel EEADR ; point to address

 incf EEADR,f ; inc to next location

 btfsc STATUS,Z ; cross over 0xff

 incf EEADRH,f ; yes then inc high

 goto next1 ; read next byte

;--

;--

Message1 DA "Master and Slave I2C",0x00,0x00

 END ; required directive

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 21

;***

; *

; Implementing Master I2C with the MSSP module on a PICmicro *

; *

;***

; *

; Filename: i2ccomm.asm *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

; Author: Richard L. Fischer *

; John E. Andrews *

; *

; Company: Microchip Technology Incorporated *

; *

;***

; *

; Files required: *

; *

; i2ccomm.asm *

; *

; i2ccomm.inc *

; flags.inc (referenced in i2ccomm.inc file) *

; i2ccomm1.inc (must be included in main file) *

; p16f873.inc *

; *

;***

; *

; Notes: The routines within this file are used to read from *

; and write to a Slave I2C device. The MSSP initialization *

; function is also contained within this file. *

; *

;**/

 #include <p16f873.inc> ; processor specific definitions

 #include "i2ccomm.inc" ; required include file

 errorlevel -302 ; suppress bank warning

 #define FOSC D’8000000’ ; define FOSC to PICmicro

AN735

DS00735A-page 22 Preliminary  2000 Microchip Technology Inc.

 #define I2CClock D’400000’ ; define I2C bite rate

 #define ClockValue (((FOSC/I2CClock)/4) -1) ;

;--

; *********************** I2C Service *************************

;--

I2C_COMM CODE

service_i2c

 movlw high I2CJump ; fetch upper byte of jump table address

 movwf PCLATH ; load into upper PC latch

 movlw i2cSizeMask

 banksel i2cState ; select GPR bank

 andwf i2cState,w ; retrieve current I2C state

 addlw low (I2CJump + 1) ; calc state machine jump addr into W

 btfsc STATUS,C ; skip if carry occured

 incf PCLATH,f ; otherwise add carry

I2CJump ; address were jump table branch occurs,
 ; this addr also used in fill

 movwf PCL ; index into state machine jump table

; jump to processing for each state = i2cState value

 goto WrtStart ; write start sequence = 0

 goto SendWrtAddr ; write address, R/W=1 = 1

 goto WrtAckTest ; test acknowledge after address = 2

 goto WrtStop ; generate stop sequence = 3

 goto ReadStart ; write start sequence = 4

 goto SendReadAddr ; write address, R/W=0 = 5

 goto ReadAckTest ; test acknowledge after address = 6

 goto ReadData ; read more data = 7

 goto ReadStop ; generate stop sequence = 8

I2CJumpEnd

 Fill (return), (I2CJump-I2CJumpEnd) + i2cSizeMask

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 23

;--

; ********************* Write data to Slave *********************

;--

; Generate I2C bus start condition [I2C STATE -> 0]

WrtStart

 banksel write_ptr ; select GPR bank

 movf write_ptr,w ; retrieve ptr address

 movwf FSR ; initialize FSR for indirect access

 incf i2cState,f ; update I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,SEN ; initiate I2C bus start condition

 return

; Generate I2C address write (R/W=0) [I2C STATE -> 1]

SendWrtAddr

 banksel temp_address ; select GPR bank

 bcf STATUS,C ; ensure carry bit is clear

 rlf temp_address,w ; compose 7-bit address

 incf i2cState,f ; update I2C state variable

 banksel SSPBUF ; select SFR bank

 movwf SSPBUF ; initiate I2C bus write condition

 return

; Test acknowledge after address and data write [I2C STATE -> 2]

WrtAckTest

 banksel SSPCON2 ; select SFR bank

 btfss SSPCON2,ACKSTAT ; test for acknowledge from slave

 goto WrtData ; go to write data module

 banksel eflag_event ; select GPR bank

 bsf eflag_event,ack_error ; set acknowledge error

 clrf i2cState ; reset I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 return

; Generate I2C write data condition

WrtData

 movf INDF,w ; retrieve byte into w

 banksel write_count ; select GPR bank

 decfsz write_count,f ; test if all done with writes

 goto send_byte ; not end of string

 incf i2cState,f ; update I2C state variable

send_byte

 banksel SSPBUF ; select SFR bank

AN735

DS00735A-page 24 Preliminary  2000 Microchip Technology Inc.

 movwf SSPBUF ; initiate I2C bus write condition

 incf FSR,f ; increment pointer

 return

; Generate I2C bus stop condition [I2C STATE -> 3]

WrtStop

 banksel SSPCON2 ; select SFR bank

 btfss SSPCON2,ACKSTAT ; test for acknowledge from slave

 goto no_error ; bypass setting error flag

 banksel eflag_event ; select GPR bank

 bsf eflag_event,ack_error ; set acknowledge error

 clrf i2cState ; reset I2C state variable

 goto stop

no_error

 banksel i2cState ; select GPR bank

 incf i2cState,f ; update I2C state variable for read

stop

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 return

;--

; ********************* Read data from Slave *********************

;--

; Generate I2C start condition [I2C STATE -> 4]

ReadStart

 banksel read_ptr ; select GPR bank

 movf read_ptr,W ; retrieve ptr address

 movwf FSR ; initialize FSR for indirect access

 incf i2cState,f ; update I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,SEN ; initiate I2C bus start condition

 return

; Generate I2C address write (R/W=1) [I2C STATE -> 5]

SendReadAddr

 banksel temp_address ; select GPR bank

 bsf STATUS,C ; ensure cary bit is clear

 rlf temp_address,w ; compose 7 bit address

 incf i2cState,f ; update I2C state variable

 banksel SSPBUF ; select SFR bank

 movwf SSPBUF ; initiate I2C bus write condition

 return

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 25

; Test acknowledge after address write [I2C STATE -> 6]

ReadAckTest

 banksel SSPCON2 ; select SFR bank

 btfss SSPCON2,ACKSTAT ; test for not acknowledge from slave

 goto StartReadData ; good ack, go issue bus read

 banksel eflag_event ; ack error, so select GPR bank

 bsf eflag_event,ack_error ; set ack error flag

 clrf i2cState ; reset I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 return

StartReadData

 bsf SSPCON2,RCEN ; generate receive condition

 banksel i2cState ; select GPR bank

 incf i2cState,f ; update I2C state variable

 return

; Read slave I2C [I2C STATE -> 7]

ReadData

 banksel SSPBUF ; select SFR bank

 movf SSPBUF,w ; save off byte into W

 banksel read_count ; select GPR bank

 decfsz read_count,f ; test if all done with reads

 goto SendReadAck ; not end of string so send ACK

; Send Not Acknowledge

SendReadNack

 movwf INDF ; save off null character

 incf i2cState,f ; update I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,ACKDT ; acknowledge bit state to send (not ack)

 bsf SSPCON2,ACKEN ; initiate acknowledge sequence

 return

; Send Acknowledge

SendReadAck

 movwf INDF ; no, save off byte

 incf FSR,f ; update receive pointer

 banksel SSPCON2 ; select SFR bank

 bcf SSPCON2,ACKDT ; acknowledge bit state to send

 bsf SSPCON2,ACKEN ; initiate acknowledge sequence

 btfsc SSPCON2,ACKEN ; ack cycle complete?

 goto $-1 ; no, so loop again

AN735

DS00735A-page 26 Preliminary  2000 Microchip Technology Inc.

 bsf SSPCON2,RCEN ; generate receive condition

 return

; Generate I2C stop condition [I2C STATE -> 8]

ReadStop

 banksel SSPCON2 ; select SFR bank

 bcf PIE1,SSPIE ; disable SSP interrupt

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 banksel i2cState ; select GPR bank

 clrf i2cState ; reset I2C state variable

 bsf sflag_event,rw_done ; set read/write done flag

 return

;--

; ******************* Generic bus idle check ***********************

;--

; test for i2c bus idle state; not implemented in this code (example only)

i2c_idle

 banksel SSPSTAT ; select SFR bank

 btfsc SSPSTAT,R_W ; test if transmit is progress

 goto $-1 ; module busy so wait

 banksel SSPCON2 ; select SFR bank

 movf SSPCON2,w ; get copy of SSPCON2 for status bits

 andlw 0x1F ; mask out non-status bits

 btfss STATUS,Z ; test for zero state, if Z set, bus is idle

 goto $-3 ; bus is busy so test again

 return ; return to calling routine

;--

; ******************* INITIALIZE MSSP MODULE *******************

;--

init_i2c

 banksel SSPADD ; select SFR bank

 movlw ClockValue ; read selected baud rate

 movwf SSPADD ; initialize I2C baud rate

 bcf SSPSTAT,6 ; select I2C input levels

 bcf SSPSTAT,7 ; enable slew rate

 movlw b’00011000’

 iorwf TRISC,f ; ensure SDA and SCL are inputs

 bcf STATUS,RP0 ; select SFR bank

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 27

 movlw b’00111000’

 movwf SSPCON ; Master mode, SSP enable

 return ; return from subroutine

 END ; required directive

AN735

DS00735A-page 28 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Implementing Master I2C with the MSSP module on a PICmicro *

; *

;***

; *

; Filename: init.asm *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

; Author: Richard L. Fischer *

; *

; Company: Microchip Technology Incorporated *

; *

;***

; *

; Files required: *

; *

; init.asm *

; *

; p16f873.inc *

; *

; *

;***

; *

; Notes: *

; *

; *

;**/

 #include <p16f873.inc> ; processor specific variable definitions

 errorlevel -302 ; suppress bank warning

 GLOBAL init_timer1 ; make function viewable for other modules

 GLOBAL init_ports ; make function viewable for other modules

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 29

;--

; ******************* INITIALIZE PORTS *************************

;--

INIT_CODE CODE

init_ports

 banksel PORTA ; select SFR bank

 clrf PORTA ; initialize PORTS

 clrf PORTB

 clrf PORTC

 bsf STATUS,RP0 ; select SFR bank

 movlw b’00000110’

 movwf ADCON1 ; make PORTA digital

 clrf TRISB

 movlw b’000000’

 movwf TRISA

 movlw b’00011000’

 movwf TRISC

 return

;--

; ******************* INITIALIZE TIMER1 MODULE *******************

;--

init_timer1

 banksel T1CON ; select SFR bank

 movlw b’00110000’ ; 1:8 prescale, 100mS rollover

 movwf T1CON ; initialize Timer1

 movlw 0x5E

 movwf TMR1L ; initialize Timer1 low

 movlw 0x98

 movwf TMR1H ; initialize Timer1 high

 bcf PIR1,TMR1IF ; ensure flag is reset

 bsf T1CON,TMR1ON ; turn on Timer1 module

 return

 END ; required directive

AN735

DS00735A-page 30 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Filename: mastri2c.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

;******* INTERRUPT CONTEXT SAVE/RESTORE VARIABLES

INT_VAR UDATA 0x20 ; create uninitialized data "udata" section

w_temp RES 1

status_temp RES 1

pclath_temp RES 1

INT_VAR1 UDATA 0xA0 ; reserve location 0xA0

w_temp1 RES 1

;******* GENERAL PURPOSE VARIABLES

GPR_DATA UDATA

temp_hold RES 1 ; temp variable for string compare

ptr1 RES 1 ; used as pointer in string compare

ptr2 RES 1 ; used as pointer in string compare

STRING_DATA UDATA

write_string RES D’30’

read_string RES D’30’

 EXTERN init_timer1 ; reference linkage for function

 EXTERN init_ports ; reference linkage for function

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 31

;***

; *

; Filename: i2ccomm1.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

; *

; Notes: *

; *

; This file is to be included in the <main.asm> file. The *

; <main.asm> notation represents the file which has the *

; subroutine calls for the functions ’service_i2c’ and ’init_i2c’. *

; *

; *

;**/

 #include "flags.inc" ; required include file

 GLOBAL write_string ; make variable viewable for other modules

 GLOBAL read_string ; make variable viewable for other modules

 EXTERN sflag_event ; reference linkage for variable

 EXTERN eflag_event ; reference linkage for variable

 EXTERN i2cState ; reference linkage for variable

 EXTERN read_count ; reference linkage for variable

 EXTERN write_count ; reference linkage for variable

 EXTERN write_ptr ; reference linkage for variable

 EXTERN read_ptr ; reference linkage for variable

 EXTERN temp_address ; reference linkage for variable

 EXTERN init_i2c ; reference linkage for function

 EXTERN service_i2c ; reference linkage for function

;***

; *

; Additional notes on variable usage: *

; *

AN735

DS00735A-page 32 Preliminary  2000 Microchip Technology Inc.

; The variables listed below are used within the function *

; service_i2c. These variables must be initialized with the *

; appropriate data from within the calling file. In this *

; application code the main file is ’mastri2c.asm’. This file *

; contains the function calls to service_i2c. It also contains *

; the function for initializing these variables, called ’init_vars’*

; *

; To use the service_i2c function to read from and write to an *

; I2C slave device, information is passed to this function via *

; the following variables. *

; *

; *

; The following variables are used as function parameters: *

; *

; read_count - Initialize this variable for the number of bytes *

; to read from the slave I2C device. *

; write_count - Initialize this variable for the number of bytes *

; to write to the slave I2C device. *

; write_ptr - Initialize this variable with the address of the *

; data string or data byte to write to the slave *

; I2C device. *

; read_ptr - Initialize this variable with the address of the *

; location for storing data read from the slave I2C *

; device. *

; temp_address - Initialize this variable with the address of the *

; slave I2C device to communicate with. *

; *

; *

; The following variables are used as status or error events *

; *

; sflag_event - This variable is implemented for status or *

; event flags. The flags are defined in the file *

; ’flags.inc’. *

; eflag_event - This variable is implemented for error flags. The *

; flags are defined in the file ’flags.inc’. *

; *

; *

; The following variable is used in the state machine jumnp table. *

; *

; i2cState - This variable holds the next I2C state to execute.*

; *

;***

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 33

;***

; *

; Filename: flags.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

; *

; Notes: *

; *

; This file defines the flags used in the i2ccomm.asm file. *

; *

; *

;**/

; bits for variable sflag_event

#define sh1 0 ; place holder

#define sh2 1 ; place holder

#define sh3 2 ; place holder

#define sh4 3 ; place holder

#define sh5 4 ; place holder

#define sh6 5 ; place holder

#define sh7 6 ; place holder

#define rw_done 7 ; flag bit

; bits for variable eflag_event

#define ack_error 0 ; flag bit

#define eh1 1 ; place holder

#define eh2 2 ; place holder

#define eh3 3 ; place holder

#define eh4 4 ; place holder

#define eh5 5 ; place holder

#define eh6 6 ; place holder

#define eh7 7 ; place holder

AN735

DS00735A-page 34 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Filename: i2ccomm.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

; *

; Notes: *

; *

; This file is to be included in the i2ccomm.asm file *

; *

; *

;**/

 #include "flags.inc" ; required include file

i2cSizeMask EQU 0x0F

 GLOBAL sflag_event ; make variable viewable for other modules

 GLOBAL eflag_event ; make variable viewable for other modules

 GLOBAL i2cState ; make variable viewable for other modules

 GLOBAL read_count ; make variable viewable for other modules

 GLOBAL write_count ; make variable viewable for other modules

 GLOBAL write_ptr ; make variable viewable for other modules

 GLOBAL read_ptr ; make variable viewable for other modules

 GLOBAL temp_address ; make variable viewable for other modules

 GLOBAL init_i2c ; make function viewable for other modules

 GLOBAL service_i2c ; make function viewable for other modules

;******* GENERAL PURPOSE VARIABLES

GPR_DATA UDATA

sflag_event RES 1 ; variable for i2c general status flags

eflag_event RES 1 ; variable for i2c error status flags

i2cState RES 1 ; I2C state machine variable

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 35

read_count RES 1 ; variable used for slave read byte count

write_count RES 1 ; variable used for slave write byte count

write_ptr RES 1 ; variable used for pointer (writes to)

read_ptr RES 1 ; variable used for pointer (reads from)

temp_address RES 1 ; variable used for passing address to functions

;***

; *

; Additional notes on variable usage: *

; *

; The variables listed below are used within the function *

; service_i2c. These variables must be initialized with the *

; appropriate data from within the calling file. In this *

; application code the main file is ’mastri2c.asm’. This file *

; contains the function calls to service_i2c. It also contains *

; the function for initializing these variables, called ’init_vars’*

; *

; To use the service_i2c function to read from and write to an *

; I2C slave device, information is passed to this function via *

; the following variables. *

; *

; *

; The following variables are used as function parameters: *

; *

; read_count - Initialize this variable for the number of bytes *

; to read from the slave I2C device. *

; write_count - Initialize this variable for the number of bytes *

; to write to the slave I2C device. *

; write_ptr - Initialize this variable with the address of the *

; data string or data byte to write to the slave *

; I2C device. *

; read_ptr - Initialize this variable with the address of the *

; location for storing data read from the slave I2C *

; device. *

; temp_address - Initialize this variable with the address of the *

; slave I2C device to communicate with. *

; *

; *

; The following variables are used as status or error events *

; *

; sflag_event - This variable is implemented for status or *

; event flags. The flags are defined in the file *

AN735

DS00735A-page 36 Preliminary  2000 Microchip Technology Inc.

; ’flags.inc’. *

; eflag_event - This variable is implemented for error flags. The *

; flags are defined in the file ’flags.inc’. *

; *

; *

; The following variable is used in the state machine jumnp table. *

; *

; i2cState - This variable holds the next I2C state to execute.*

; *

;***

AN735

 2000 Microchip Technology Inc. Preliminary DS00735A-page 37

NOTES:

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

